IDENTIFICAÇÃO DE FALHAS TRANSCORRENTES EM SEÇÕES SÍSMICAS

PEDRO VITOR ZALÁN*

ABSTRACT The main criteria used in identifying strike-slip faults in seismic sections are (1) flower structures (positive or negative); (2) change from normal to reverse fault along strike; (3) upthrown block switching side along strike; (4) several kinds of changes along strike; (5) reversal of or change in fault throw with depth; (6) abrupt changes in the thickness of seismic facies or stratigraphic intervals across the fault; (7) abrupt changes in seismic facies across the fault; (8) abrupt changes in structures and intensities and/or styles of deformation across the fault, and (9) complex geometries of the fault plane. The usefulness of these criteria lie in the fact that a very restricted number of seismic sections (two or three, sometimes even a single one), largely spaced and crossing the fault zone at great angles, is enough to determine the existence of wrench tectonism in a target area. Such recognition has important economic implications because it increases the variety of potential traps that can possibly exist along the fault trend.

A tectônica transcorrente teve sua importância renovada nos últimos anos devido ao grande volume de dados sísmicos obtidos pela indústria de petróleo nas bacias sedimentares do mundo inteiro. Os geocientistas de petróleo começaram a reconhecer que o papel desempenhado por falhas transcorrentes na evolução geológica de bacias sedimentares é muito maior e que previamente suspeitado. Isso foi particularmente revolucionário nas bacias cratônicas da América do Norte, Mar do Norte e Brasil; e nas bacias de margem passiva. Nas margens ativas de placas, esta importância já havia sido reconhecida anteriormente (por exemplo, Califórnia e Indonésia). Várias falhas de alto ângulo, normalmente interpretadas como normais ou reversas, foram re-interpretações como falhas transcorrentes. Verificou-se que certos dobramentos tinham sido causados por transposição em vez de simples compressão. A origem de várias bacias passou a ser atribuída a esforços transensionais** (movimentos transcorrentes com componentes extensionais) em vez de simplesmente extensionais. Compreendeu-se que a maioria das bacias sedimentares sofre, durante sua evolução, um ou mais eventos de tectonismo transcorrente, quando então falhas preexistentes são reativadas por deslocamentos laterais e seu preenchimento sedimentar sofre inversão estrutural (positiva por transpressão ou negativa por transstenção). Recentemente esquemas de classificação global de bacias sedimentares dão grande importância a eventos tectônicos transcorrentes na evolução das mesmas (Kingston et al. 1983).

Consequentemente, o reconhecimento do caráter transcorrente de zonas de falha em seções sísmicas tornou-se cada vez mais importante. Tal reconhecimento traz importantes implicações econômicas por ele aumentar a variedade de traps potenciais de hidrocarbonetos que podem existir ao longo da direção da falha. Diversos conceitos novos surgiram e permitem, hoje em dia, reconhecer falhas de deslocamento lateral em seções sísmicas (seções verticais).

Critérios clássicos de geologia de campo não podem ser usados para identificar falhas transcorrentes em seções sísmicas. A maioria das bacias sedimentares que sofreram reativações tectônicas de caráter transcorrente apresenta deslocamentos laterais de blocos de pequena escala. Na maioria dos casos é muito difícil discernir, por mapas de atributos de subsuperfície, rejeitos horizontais de elementos estruturais ou estratigráficos ao longo das falhas. Observou-se, entretanto, que a maioria das falhas, ao possuírem uma componente de movimentação horizontal, apresenta respostas sísmicas características, que se repetem de bacia para bacia. Um determinado número de critérios sísmicos foi estabelecido e eles podem ser seguramente usados para se estabelecer o caráter transcorrente de uma zona de falha. O objetivo deste trabalho é discorrer brevemente sobre tais critérios e ilustrá-los com exemplos de seções sísmicas de bacias brasileiras. Os intérpretes sísmicos atuais devem estar familiarizados com tais conceitos, já que a ocorrência de falhas transcorrentes em bacias sedimentares está muito mais para uma regra do que para uma exceção.

CRITÉRIOS SÍSMICOS Os critérios usados na identificação de falhas transcorrentes em seções sísmicas são aqui listados, discutidos e ilustrados. Pode-se antecipar que, entre esses critérios, apenas um deles (estrutura-em-flor) pode

* Petrobrás/Depex. Av. Chile, 65, 13.º andar, CEP 20031, Rio de Janeiro, RJ, Brasil
** Deve-se ressaltar, entretanto, que a adaptação mais correta do termo transensional seria transacional, já que, em português, a palavra transicional é usada no sentido de esforços extensionais, como tradução do termo inglês tectonic

Petrobrás/Depex. Av. Chile, 65, 13.º andar, CEP 20031, Rio de Janeiro, RJ, Brasil

Deve-se ressaltar, entretanto, que a adaptação mais correta do termo transensional seria transacional, já que, em português, a palavra transicional é usada no sentido de esforços extensionais, como tradução do termo inglês tectonic

Petrobrás/Depex. Av. Chile, 65, 13.º andar, CEP 20031, Rio de Janeiro, RJ, Brasil

Deve-se ressaltar, entretanto, que a adaptação mais correta do termo transensional seria transacional, já que, em português, a palavra transicional é usada no sentido de esforços extensionais, como tradução do termo inglês tectonic
ser usado como indicador definitivo de transcorrência. Os outros devem ser usados coletivamente, ou associados a outras características em planta da zona de falha, para se determinar o caráter transcorrente da mesma. Quando dois ou mais desses critérios são observados ao longo da direção de uma zona de falha, tem-se uma boa indicação de que se está provavelmente lidando com uma falha transcorrente.

Estruturas-em-flor

Estruturas-em-flor positivas são definidas como estruturas anti-formais lineares, delimitadas e deslocadas por falhas reversas que convergem em profundidade para uma falha subvertical principal (Fig. 1A). Em seções verticais (seções sísmicas), tais feições aparecem como um anticlinal, cujo arco superior é muito maior que o arco inferior, situado acima de estratos não dobrados e cortado por várias falhas predominantemente reversas e convergentes em profundidade (Fig. 2). Deve-se ressaltar, entretanto, que a característica principal da estrutura-em-flor positiva é o predominio marcante de falhas reversas na região em cunha, e não necessariamente o anticlinal. De uma maneira geral, a região em cunha encontra-se estruturalmente elevada em relação às áreas adjacentes a ela devido à presença de várias falhas reversas, seja sob a forma de um anticlinal ou sob qualquer outra forma (*horsts*, *bloco soerguidos*, etc.) (Fig. 3).

Estruturas-em-flor negativas são definidas como estruturas sínfomas lineares, delimitadas e deslocadas por falhas normais que convergem em profundidade para uma falha subvertical principal (Fig. 1B). Em seções verticais (seções sísmicas), tais feições aparecem como uma área em cunha abatida, relativamente a suas margens, seja sob a forma de um sinclinal ou sob outras formas (*grãbens*, *bloco abatidos*, etc.). A característica principal de uma estrutura-em-flor negativa é o predominio marcante de falhas normais na região em cunha, que fazem com que ela seja abatida. Exemplos de tais estruturas podem ser encontrados em Harding (1983) e D’Onfro & Giagola (1983).

Figura 1 – Estruturas características associadas a falhas transcorrentes (vide discussão no texto): A. estrutura-em-flor positiva; B. estrutura-em-flor negativa; C. inversão do rejeito da falha com a profundidade; D. correlações estratigráficas complexas através da falha; E. mudanças laterais abruptas de fácies sísmicas, e F. mudanças laterais abruptas de espessura de determinados intervalos.

Estruturas-em-flor aparecem geralmente como uma série de estruturas transccionais entre os dois extremos descritos acima (positivas e negativas). Elas raramente são constituídas apenas por falhas reversas ou apenas por falhas normais. Comumente, os dois tipos de falhas estão presentes na região em cunha (Fig. 4). A predominância de falhas reversas ou de falhas normais indicará o ambiente transpressional ou transtensional, respectivamente, de formação dessas estruturas.

As regiões em cunha dessas estruturas não são também necessariamente simétricas. Estruturas-em-flor apresentando desenvolvimento parcial das regiões em cunha, sob a forma de meia-taças, meia-cunhas ou retângulos, são comuns (Fig. 5).

Frequentemente, por motivos diversos, não ocorre o desenvolvimento pleno de uma estrutura-em-flor. Neste caso, surtem indicações de convergência de falhas em profundidade (Fig. 6) ou diminuição de arcos de dobrar sobre falhas mais profundas (Fig. 7) podem constituir bons motivos para se desconfiar de movimentações laterais ao longo da zona de falha em questão.

Figura 4 – Estrutura-em-flor composta por duas falhas reversas e uma normal. Sistema Cretáceo da Bacia de Piauí-Camocim. Seção em tempo migrada

Figura 6 — O caráter transcurrente desta zona de falha é sugerido pelo acunhamento em profundidade de duas grandes falhas subverticais. Notar que além do possível rejeito lateral há também um rejeito vertical. Sistema Cretáceo da Bacia de Plaú-Camocim. Seção em tempo migrado

O motivo pelo qual estruturas-em-flor desenvolvem geometria em cunha não está ainda bem estabelecido. Possivelmente, ela representa a diminuição gradual do confinamento de um fluísse de duas blocos que se movem lateralmente, de baixo para cima. É como se houvesse uma expansão gradativa, de baixo para cima, da zona de deformação. No caso de estruturas-em-flor positivas, o que ocorre é uma verdadeira expansão seguida de transbordamento dos sedimentos situados entre dois blocos convergentes. Baixas sedentárias inteiras podem ser soerguidas, expulsas de suas cavidades crustais devido à redução de volume das mesmas pela convergência lateral de blocos do embasamento. À medida que elas são soerguidas acima das ombreiras do embasamento, o preenchimento sedimentar tende a transbordar e acalar o embasamento pelas mais complexas estruturas geológicas (dobras, falhas reversas, falhas de empurrão, nappe de charriage). Tal relação ficou bem demonstrada nos trabalhos de campo de Sylvester & Smith (1976). Este é o fenômeno que se repete, em menor escala, em cada estrutura-em-flor positiva. Estruturas-en-flor negativas representam exatamente o oposto, ou seja, abatimento devido à criação de volume extra entre blocos divergentes.

Estruturas-em-flor desenvolvem-se próximo à superfície terrestre ou a superfícies de contato entre camadas com propriedades geológicas bem diferentes. Por exemplo, na Bacia de Plaú-Camocim a maioria das estruturas-em-flor desenvolve-se no topo da Sequência Rift (camadas dúcteis), próximo à discordância que a separa da Sequência Drifte (camadas dúcteis) (Zdian 1984). No Mar do Norte, o desenvolvimento se dá nos sedimentos situados logo abaixo de espessas camadas de sal (Glennie & Boegner 1981). A camada rúptil apresenta a deformação bem impressa, enquanto a camada dúctil, geralmente situada acima, se deforma por fluxo plástico. A deformação das camadas dúcteis dificilmente se dá em seções sísmicas, podendo, assim, gerar erros interpretativos quanto à idade do tectonismo transcurrente.

Figura 7 — O acunhamento de uma seção dobrada exatamente acima de uma grande falha subvertical sugere reativação transcurrente de pequena monte associada a esta falha. Sistema Cretáceo da Bacia de Plaú-Camocim. Seção em tempo migrada.

Nem todas as falhas transcurrentes apresentam estruturas-em-flor em seções verticais, nem são elas desenvolvidas ao longo de toda a extensão da falha. Elas podem desenvolver-se localmente, enquanto nos outros segmentos as falhas terão a aparência de simples falhas normais ou reversas (em seções verticais), ou apresentarão outras características de falhas transcurrentes (descritas a seguir).

No estágio atual dos conhecimentos, o reconhecimento de uma estrutura-em-flor é um critério seguro para se afirmar que a zona de falha em questão possui uma componente de deslocamento horizontal, seja ela original ou criada por reativação. Entretanto, é muito importante que sempre se constate que a região em cunha converge em profundidade para uma zona de falha subvertical. Muitas outras estruturas se assemelham a estruturas-en-flor e são resultantes de regimes tectônicos completamente diferentes de transcorrência (falhas listricas com falhas antifáticas associadas, dipirismo, cinturões de dobramento, tectônica vertical de blocos, etc.). Na maioria das vezes, essas outras estruturas não estão ligadas em profundidade a zonas de falhas verticais. Neste sentido, o artigo de Harding (1985) é de grande utilidade pois aponta todos os cuidados necessários à correta identificação de estruturas-em-flor e ajuda a manter a integridade destas como indicadores seguros de falhas transcurrentes.
O Efeito do Golfinho
 Este efeito foi pela primeira vez descrito por Crowell & Sylvester (1979, apud Graham et al. 1984) e refere-se ao intenso sobe-desce experimentado pelos blocos conforme se deslocam ao longo da falha transcorrente. Emmons (1968) observou que as superfícies das falhas transcorrentes obtidas em seus experimentos eram irregularmente onduladas (tanto na horizontal como na vertical). Conforme os dois blocos crustais se movem horizontalmente ao longo desta superfície de ruptura ondulada, movimentos ascendentes e descendentes afetarão irregularmente cada bloco crustal. Como consequência direta deste fenômeno, quatro outros critérios sísmicos surgem:

- A falha muda de caráter (de normal para reversa, e vice-versa) ao longo de sua direção (Glennie & Boegner 1984). O bloco alto pode estar consistentemente do mesmo lado. Neste caso, o que ocorre é apenas mudança na direção de mergulho do plano de falha (Fig. 8A).

- A falha não muda de caráter (sempre normal, ou sempre reversa) ao longo de sua direção. O bloco alto, entretanto, mudará de lado frequentemente. Neste caso, ocorrem mudanças na direção de mergulho do plano de falha e inversão no movimento relativo dos blocos (Fig. 8B).

- Mudanças gerais ao longo da direção da falha. A falha pode mudar de reversa para normal, e vice-versa; o bloco alto pode mudar frequentemente de lado, assim como a direção e o ângulo de mergulho do plano de falha podem variar intensamente (Fig. 8C). Tal padrão irregular da geometria de um plano de falha transcorrente foi bem exemplificado por Fagerland (1983, Fig. 3).

Figura 8 – Cortes transversais esquemáticos de falhas transcorrentes com direção norte-sul, ilustrando comportamentos diversos devido ao efeito do golfinho: A. falha muda de normal para reversa e o bloco alto continua do mesmo lado; B. falha não muda de caráter (sempre normal) e o bloco alto muda de lado; e C. geometria altamente irregular. Falha muda de normal para reversa, e vice-versa. O bloco alto muda de lado constantemente, assim como a direção e o ângulo de mergulho do traço do plano de falha.

- Reversão do rejeito aparente da falha com a profundidade (Bodenhausen & Ott 1981, Glennie & Boegner 1981, D’Onofrio & Giagola 1983). É muito comum, em uma falha transcorrente, a magnitude do rejeito aparente (visto em uma seção sísmica) variar com a profundidade e até mesmo se inverter para cima ou para baixo (Figs. 1C, 9 e 10). Tal fato pode ser explicado pelo efeito do golfinho ou pela reativação transcorrente de falhas mais antigas, ativas em outros eventos tectônicos, e com rejeitos diferenciais ao longo da seção estratigráfica. A figura 11 mostra um belo exemplo de uma falha da fase rife de evolução da Bacia da Foz do Amazonas e que continuou agindo como falha normal até o final do Eoceno, quando então foi reativada como falha transcorrente dextral. Aguiar et al. (1986) mapearam esta falha e identificaram dobras en échelon, deslocamentos laterais e reversão de rejeito em seção sísmica (tal como na Fig. 11) ao longo dela.

Figura 9 – Seção em tempo migrada mostrando exemplo de falha com reversão no rejeito aparente com a profundidade (utilizar como referência dobras de arrasto nos refletores X e Y). Sistema Cretáceo da Bacia de Piauí-Camocim.

Correlações Estratigráficas/Estruturais através da Falha

O movimento lateral de blocos ao longo de uma falha transcorrente coloca a lado fácies sedimentares, litológicas, estruturas e domínios estruturais diferentes. Como consequência direta disto, três outros critérios sísmicos surgem.

- Mudanças abruptas na espessura de um determinado intervalo estratigráfico ou fácies sísmica através da falha (Glennie & Boegner 1981, D’Onofrio & Giagola 1983). A movimentação lateral da falha transcorrente pode justaportar partes distais (mais delgadas) e partes proximais (mais espessas) de uma mesma fácies sedimentar. Em uma seção sísmica, tal fenômeno será representado pela ocorrência lado a lado da mesma fácies sísmica, com espessuras bem diferentes (Figs. 1F e 12).

- Mudanças abruptas de fácies sísmicas através da falha. Quando a movimentação lateral é muito grande, fácies sedimentares diferentes podem ser justapostas ao longo da fa-
Figura 10 – Seção em tempo migrada mostrando outro exemplo de falha com reversão no rejeito aparente com a profundidade. Sistema Cretáceo da Bacia de Plaúi-Camocim. Seção em tempo migrada

Poços perfurados em ambos os lados da falha poderão fornecer subsídios importantes para esses dois últimos critérios. Há casos, entretanto, em que as mudanças nas fácies sedimentares justapostas, ou em suas espessuras, não são tais que permitam sejam elas detectadas mediante seus atributos sísmicos. Nestes casos, os dados de poços são essenciais para se caracterizar a falha como transcorrente. A análise detalhada da evolução estratigráfica dos pacotes justapostos pode indicar diferenças marcantes, tais como discordâncias de um dos lados da falha (tendência de bloco alto) correspondentes à disposição de fácies sedimentares típicas de blocos baixos (fanglomerados, folhelhos lacustres etc.), do outro lado. De uma maneira geral, correlações estratigráficas complexas através da falha constituem boas indicações de falhas transcorrentes (Fig. 1D).

- Mudanças abruptas de elementos ou atitudes estruturais através da falha. Deslocamentos laterais de grande magnitude podem justapôr áreas com diferentes evoluções tectônicas (diferentes deformações). Consequentemente, padrões estruturais diversos poderão ocorrer lado a lado. Por exemplo, um embasamento granítico (zona cega, em seção sísmica) poderá estar justaposto a um embasamento metasedimentar de um cinturão de dobramentos (refletores fortes, subparalelos e dobrados, em seção sísmica). Um pacote sedimentar não perturbado tectonicamente poderá ocorrer lado a lado com um pacote sedimentar altamente estruturado (oriundo de uma região previamente perturbada). Pequenos deslocamentos laterais podem justapôr diferentes flancos das dobras en échelon. O resultado disto é uma abrupta mudança nos ângulos de mergulho dos estratos através da falha (D’Onfro & Giagola 1983).

Figura 11 – Seção em tempo migrada mostrando falha com dobra de arrasto de falha normal abaixo do topo do Paleoceno (refletor P) e dobra de arrasto de falha reversa na seção do Eoceneo (E). Tal-falha comportou-se como normal do Cretáceo ao Eoceneo (desde a fase riftes) e foi reativa da como transcorrente dextral ao final do Eoceneo, quando estão esforços transpressionais originaram as dobras de arrasto reversas nos sedimentos eocénicos. Observar as espessuras maiores dos pacotes do Eoceneo e Paleoceneo no bloco baixo da falha. O topo do Cretáceo (K) não foi identificado no bloco baixo da falha, mas deve se situar abaixo dos 4 segundos. Bacia da Foz do Amazonas. Adaptado de Aguiar et al. (1986).

Figura 12 – Seção em tempo migrada mostrando uma falha subvertical com uma região em cunha cega (sem refletores, provavelmente devido a intenso quebraamento) sobrellevada na parte superior, e espessuras anomalousamente diferentes da mesma fácies sísmica (refletores fortes, subparalelos e contínuos, vide setas) lado a lado na parte inferior. Sistema Cretáceo da Bacia de Plaúi-Camocim.
De uma maneira geral, toda vez que o geólogo ou geofísico constatar que as mudanças estratigráficas/estruturais são muito marcantes, ou abruptas, de um lado para outro de uma falha, a hipótese de transcorridência deverá ser investigada. Todas as linhas sísmicas que cortem a falha deverão ser analisadas com cuidado em busca dos critérios aqui discutidos.

Geometrias Complexas do Plano de Falha Por serem geralmente subverticais, as falhas transcorrentes aparecem, em mapa, como traços retilíneos, levemente sinuosos. Em seções verticais, entretanto, os traços dos planos de falhas transcorrentes podem apresentar geometrias muito complexas (vide os experimentos de Emmons 1968). Mudanças no sentido do mergulho, tendência à diminuição do ângulo de mergulho de baixo para cima, semicírculos e meia-razões são geometrias comuns de traços de falhas transcorrentes em seções sísmicas (Figs. 13 e 14).

Figura 13 – Seção em tempo migrada mostrando mudança no sentido do mergulho de falha transcorrente. De 2,5 s para baixo, a falha é normal. De 2,5 s para cima, a falha é reversa. Sistema Cretáceo da Bacia de Piauí-Camocim

Figura 14 – Seção em tempo migrada mostrando geometria de meia-razão de uma falha transcorrente. Sistema Cretáceo da Bacia de Piauí-Camocim

CONCLUSÕES Nove critérios para reconhecimento de falhas transcorrentes em seções sísmicas foram apresentados e discutidos. São frutos da evolução dos conhecimentos acerca de tectônica transcorrente, grandemente acelerados nestes últimos 30 anos, e de um acúmulo gigantesco de dados sísmicos nos mais diversos tipos de bacia do mundo inteiro.

Tais critérios são: 1) estruturas-m-flor (positivas ou negativas); 2) mudança no caráter da falha (de normal para reversa) ao longo de sua direção; 3) mudança do bloco alto, de um lado para outro, ao longo de sua direção; 4) mudanças gerais (de caráter e de bloco alto) ao longo de sua direção; 5) reversão do rejeito aparente da falha com a profundidade; 6) mudanças abruptas na espessura de fácies sísmicas ou intervalos estratigráficos através da falha; 7) mudanças abruptas de fácies sísmicas através da falha; 8) mudanças abruptas de estruturas e intensidade e/ou estilos de deformações através da falha; e 9) geometrias complexas do plano de falha.

Torna-se muito importante frisar que, desses critérios, só as estruturas-em-flor podem ser usadas isoladamente como indicadores definitivos de transcorridência (desde que corretamente identificadas, Harding 1985). Os outros critérios devem ser usados coletivamente, isto é, deve-se ter a ocorrência de três ou quatro deles ao longo da direção de uma falha para que se possa ter certeza do caráter transcorrente dela.

A utilidade de tais critérios reside no fato de serem necessárias poucas seções sísmicas (três, às vezes apenas uma) cortando a falha com espaçamentos grandes ou pequenos, para se determinar a existência de tectonismo transcorrente em uma área de exploração. Tal reconhecimento torna a
direção (orientação) de uma falha altamente favorável para a pesquisa de trapas estruturais diversas. Além disso, essas condições (poucas linhas sísmicas e largamente espaçadas) são as mais comumente encontradas durante os estágios iniciais de exploração em qualquer bacia sedimentar. O mapeamento de falhas e dobragens en échelon (estruturas básicas de tectonismo transcorrente) requer um grande número de seções sísmicas regularmente espaçadas a pequenas distâncias, condições estas não tão facilmente encontradas.

REFERÊNCIAS BIBLIOGRÁFICAS

MANUSCRIPTO

Recebido em 12 de maio de 1986
Revisão aceita em 17 de outubro de 1986